Scalable Strategies for Stochastic Network Problems

Nai-Yuan Chiang¹ Victor M Zavala¹ Andreas Grothey²

¹Mathematics and Computer Science, Argonne National Laboratory

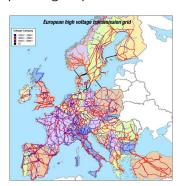
²School of Mathematics, University of Edinburgh

Oct 08 2013

Motivation

How to exploit structure in power grid problems?

- What tools?
 - 1) Interior Point Methods
 - 2) Parallel Linear Algebra
- Applications:
 - 1) AC-SCOPF
 - 2) DC-OPF



Interior Point Methods (IPM)

Nonlinear Program

min
$$\mathbf{f}(x)$$
 s.t. $\mathbf{c}(x) = 0$ (NLP) $x \ge 0$

KKT Conditions

$$\nabla \mathbf{f}(x) - \nabla \mathbf{c}(x)\lambda - s = 0
\nabla \mathbf{c}^{\top} x = 0
XSe = 0
x, s \ge 0$$
(KKT)

$$X = \operatorname{diag}(x), S = \operatorname{diag}(s)$$

Interior Point Methods (IPM)

Barrier Problem

$$\min \mathbf{f}(x) - \mu \sum_{i} \ln x_{i} \quad \text{s.t.} \quad \mathbf{c}(x) = 0 \\ x \geq 0$$
 (NLP_{\mu})

KKT Conditions

$$\nabla \mathbf{f}(x) - \nabla \mathbf{c}(x)\lambda - s = 0
\nabla \mathbf{c}^{\top} x = 0
XSe = \mu e
x, s \ge 0$$
(KKT_{\(\mu\)})

 $X = \operatorname{diag}(x), S = \operatorname{diag}(s)$

- Introduce logarithmic barriers for $x \ge 0$
- ullet For $\mu o 0$ solution of (NLP $_{\mu}$) converges to solution of (NLP)
- System (KKT_{μ}) can be solved by Newton's Method

Newton-Step in IPM

Newton-Step: Augmented System(IPM)

$$\begin{bmatrix} -H - \Theta & \mathcal{A}^{\top} \\ \mathcal{A} & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_c - X^{-1} r_{xs} \\ \xi_b \end{bmatrix}$$

where $\Theta = X^{-1}S$, X = diag(x), S = diag(s). Matrix \mathcal{A} is the constraint Jacobian, and H is the Hessian of the Lagrangian function L.

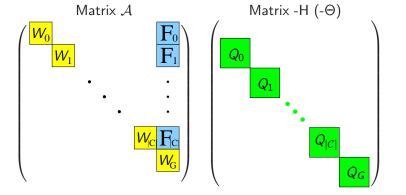
- NLP needs more work to ensure global convergence.
- IPM with filter technique (IPOPT¹).

¹Andreas Wächter and Lorenz T. Biegler. "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming". In: *Math. Program.* 106.1, Ser. A (2006), pp. 25–57. ISSN: 0025-5610.

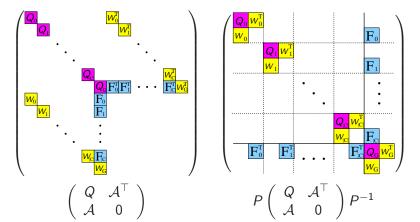
Parallel Linear Algebra for IPM

Newton-Step: Augmented System(IPM)

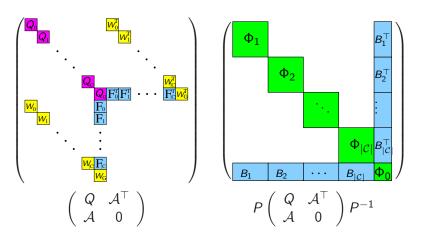
$$\Phi = \begin{bmatrix} -H - \Theta & \mathcal{A}^{\top} \\ \mathcal{A} & 0 \end{bmatrix}$$
 (1)



Structures of A, Q and Φ :



Structures of A, Q and Φ :



Bordered block-diagonal structure in Augmented System!

Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix

$$\underbrace{\begin{pmatrix} \Phi_1 & B_1^\top \\ & \ddots & \vdots \\ & \Phi_n B_n^\top \\ B_1 \cdots B_n & \Phi_0 \end{pmatrix}}_{\Phi} \underbrace{\begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_0 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \\ \mathbf{b}_0 \end{pmatrix}}_{\mathbf{b}}$$

Solution of Block-system by Schur-complement

The solution to $\Phi x = \mathbf{b}$ is

$$x_0 = C^{-1}\mathbf{b}_0, \quad \mathbf{b}_0 = b_0 - \sum_i B_i \Phi_i^{-1} \mathbf{b}_i$$

 $x_i = \Phi_i^{-1} (\mathbf{b}_i - B_i^{\top} x_0), \quad i = 1, ..., n$

where C is the Schur-complement

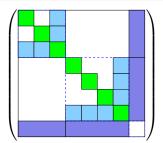
$$C = \Phi_0 - \sum_{i=1}^n B_i \Phi_i^{-1} B_i^{\top}$$

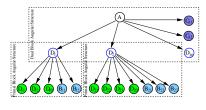
 \Rightarrow only need to factor Φ_i , not Φ

Paraller Linear Algebra for the Structured Problem

Parallel IPM Implementation

- Jacek Gondzio and Andreas Grothey: Exploiting structure in parallel implementation of interior point methods for optimization. (OOPS)
- Cosmin G. Petra and Mihai Anitescu: A preconditioning technique for Schur complement systems arising in stochastic optimization.



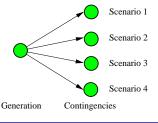


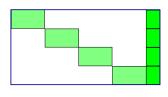
Paraller Linear Algebra for the Structured Problem

Structure comes from ...

- Robust Stochastic Programming (scenarios)
- Network (partitions)
- Still computationally expensive: memory and communication
- Possible remedies:
 - a) scenario elimination
 - b) iterative method (for solving linear system)

Scenario Elimination





Scenario Elimination

- Start from a smaller model with one "base" scenario.
- Generate a central point for the reduced problem.
- Fix the global variables and find feasible solutions of other scenarios. (Scenario Analysis)
- Add violated scenario dynamically.

AC-SCOPF: Scenario & Scenario Elimination

Generic AC OPF Model

Optimal Power Flow (OPF)

A minimum cost power generation model.

Parameters

```
\alpha_I, \beta_I conductance and susceptance of line I \beta_b susceptance of power source at bus b d_b^P, d_b^Q real and reactive power demand at bus b flow limit for line I
```

Variables

v_b	Voltage level at bus b
δ_{b}	Phase angle at bus b
p_g , q_g	Real and reactive power output at generator g
$f_{(i,j)}^{P}, f_{(i,j)}^{Q}$	Real and reactive power flow on line $I = (i, j)$

Generic AC OPF Model

Constraints

• Kirchhoff's Voltage Law (KVL) $f_{(i,j)}^{P} = \alpha_{I}v_{i}^{2} - v_{i}v_{j}[\alpha_{I}\cos(\delta_{i} - \delta_{j}) + \beta_{I}\sin(\delta_{i} - \delta_{j})]$ $f_{(i,j)}^{Q} = -\beta_{I}v_{i}^{2} - v_{i}v_{j}[\alpha_{I}\sin(\delta_{i} - \delta_{j}) - \beta_{I}\cos(\delta_{i} - \delta_{j})]$

• Kirchhoff's Current Law (KCL) $\sum_{g|o_g=b} p_g = \sum_{(b,i)\in L} f_{(b,i)}^P + d_b^P, \quad \forall b \in \mathcal{B}$ $\sum_{g|o_g=b} q_g - \beta_b v_b^2 = \sum_{(b,i)\in L} f_{(b,i)}^Q + d_b^Q, \quad \forall b \in \mathcal{B}$

Line Flow Limits at both ends of each line

$$(f_{(i,j)}^P)^2 + (f_{(i,j)}^Q)^2 \le (f_l^+)^2 (f_{(j,i)}^P)^2 + (f_{(i,i)}^Q)^2 \le (f_l^+)^2$$

Reference bus

$$\delta_0 = 0$$

⇒ AC OPF is a nonlinear programming problem

Security-Constrained Optimal Power Flow (SCOPF)

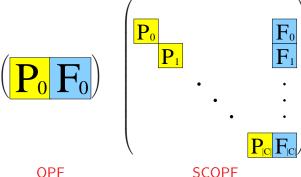
(N-1)SCOPF

Network should survive the failure of any one line (possibly after limited corrective actions) without line-overloads.

Setup

- Contingency scenarios $c \in C$, each has its own power transmission network.
- Real generation p_g and Voltage v_g at the PV bus keep same for all contingencies. (Global Variables)
- Each contingency has its flow, voltage, phase angle and reactive generation: $f_c^{P/Q}$, v_c , δ_c , q_c . (Local Variables)
- Possible modification of generator output p_c in each contingency scenario.
- Seek a generator setting that does not create line overloads for any contingency

Structure of the Problem



- SCOPF (like many other structured problems) consists of a small core that is repeated many times.
- "n-1" requires the inclusion of many contingency scenarios.
- Only a few contingencies are critical for operation of the system (but which ones)?

Flow Chart for Solving SCOPF: State of the Art



Structured IPM with Scenario Elimination

We do:

- Start from solving much smaller problem of same structure, as the practical SCOPF solution technique.
- Apply contingency analysis between IPM steps.

Advantages:

- Total number of linear algebra to build Schur complement in each IPM iteration is proportional to the size of scenarios.
- Combine two iterative processes (IPM and the pratical way to solve SCOPF) in one. → only one outter loop!

Numerical Result: OOPS

		Original			Scenario Elimination		
Prob	No.Sce	time(s)	iters	No.Act	time(s)	iters	No.ActSce
А	1	< 0.1	9	0	< 0.1	9	1
В	2	< 0.1	22	0	< 0.1	9	1
6	2	< 0.1	13	2	< 0.1	13	2
IEEE_24	38	5.7	41	6	3.9	30	6
IEEE_48	78	51.8	71	11	32.4	52	15
IEEE_73	117	204.1	97	16	156.7	92	25
IEEE_96	158	351.5	106	20	252.9	76	27
IEEE_118	178	???	??	42	1225.2	75	46
IEEE_192	318	2393.7	132	26	1586.0	92	40
L26	41	0.4	14	2	0.3	11	2
L200	371	264.3	53	7	56.4	25	7
L300	566	1153.1	88	17	196.3	22	20

Table: Scenario elimination results

• More than 200% computational resources are saved!

DC-OPF: Network Partition

Another Scalable Strategy for Parallelism

Idea: Decompose the model by the power system behavior

- Graph partitioning technique.
- Decompose the large network into several "equal-sized" pieces.
- Minimize the number of edge cuts between separated components.
- Advantages: Solve the model for each piece of cake in parallel!
- Difficulties: Unusual as generic stochastic programming:
 Partitioning may introduce high degree of coupling vars and constraints.

DC-OPF formulation

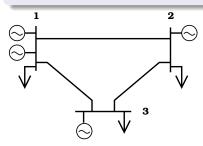
DC-OPF formulation (Default)

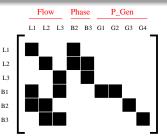
Kirchhoff's Voltage Law

$$f_l^P = -\frac{v^2}{r_l} \sum_{b \in \mathcal{B}} a_{bl} \delta_b, \quad \forall l \in \mathcal{L}$$

Kirchhoff's Current Law

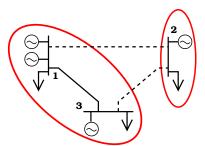
$$\sum_{g \mid o_g = b} p_g = \sum_{(b,i) \in \mathcal{L}} f^P_{(b,i)} + d^P_b, \quad \forall b \in \mathcal{B}$$

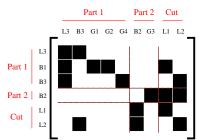




The structure of the matrix components in IPM

- Each partition corresponds to a diagonal block in the constraint Jacobian.
- Variables and constraints corresponding to the cuts are moved to the borders.





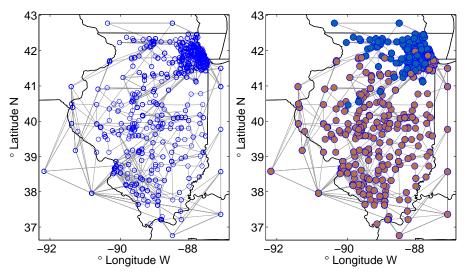
Structures of the Augmented System:



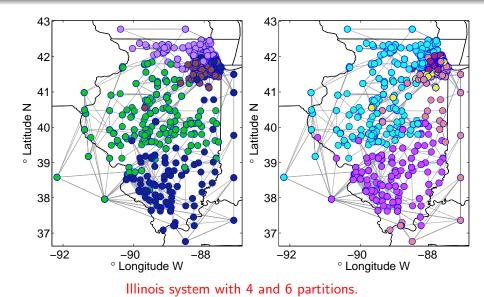
• The size of Schur complement is 2 times #.cuts!

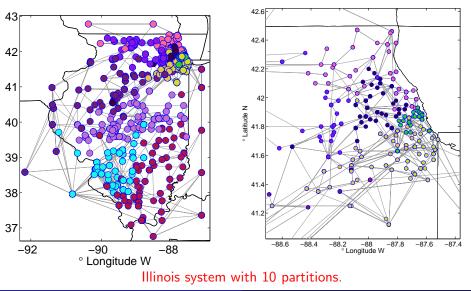
How does the network partition look like for the real system?

- Illinois system: 1908 buses and 2522 lines
- Is network partition obvious?
- How many coupling variables and constraints will be introduced?
- How would this affect the computational scalability?
- What number of partitions is sensible to apply?



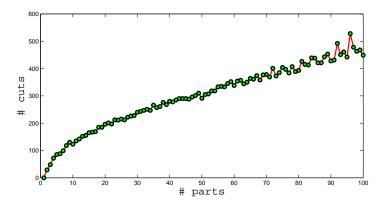
Illinois system and the system with 2 partitions.





Coupling constraints = # of the edge-cuts

- Determine the size of the Schur complement. $(2\times)$
- Communication between processes! Parallel efficiency!



Numerical results from prototype

• 4690 variables and 4430 constraints \rightarrow one time slot

Illinois system: DC-OPF

- Network partition:
 - less than 0.1s for network partitions (by Metis), regardless of the number of partitions (from 1 to 100).
 - Each part only contains 20 buses (with 100 partitions)!
- Solution time:
 - 4 partitions with four processes (72 cuts):
 - a) faster than solving the problem in serial.
 - 100 partitions with four processes (449 cuts):
 - b) slower than solving the problem in serial. (Only 191 buses in each part, but the size of Schur complement is large \rightarrow more expensive to solve this problem.)
- Scenarios can also be included in the model \rightarrow nested structure.

Conclusions

Problems is complicated

 Illinois system with 24 hours slots and Wind:
 10 mins in serial (CPLEX) for the relaxation of the Unit Commitment.i

We expect:

- ullet 24 time steps UC for the Illinois system: pprox 2.5 mins in parallel
- Partitioning with 10 parts is appliable: 100 cuts per time slot;
 100*24 = 2400 Coupling variables for the full problem;
 speed up the solution time by a factor of 10!

Future Work: merge all the tools

- Complete the NLP tool to solve the AC stochastic problem (Time! UC/ED! Security!)
- Apply the scenario elimination technique and iterative methods.

Conclusions

• Thank you for your attention!